# Algebra Examples

Assign the matrix the name to simplify the descriptions throughout the problem.
Find the reduced row echelon form of the matrix.
Perform the row operation on (row ) in order to convert some elements in the row to .
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Perform the row operation on (row ) in order to convert some elements in the row to .
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Perform the row operation on (row ) in order to convert some elements in the row to .
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
Perform the row operation on (row ) in order to convert some elements in the row to .
Replace (row ) with the row operation in order to convert some elements in the row to the desired value .
Replace (row ) with the actual values of the elements for the row operation .
Simplify (row ).
represents the set of the pivot columns in the row-reduced form of the matrix.
Rank is the dimension of the column space of .
The rank of is .
MathMaster requires javascript and a modern browser.